Fiber Lasers for Material Processing
Bill Shiner VP Industrial
June 22, 2011
NEW ENGLAND FIBER OPTIC COUNCIL
Expanding our Global Reach

London, United Kingdom
Novi, MI, USA
Yuseong-Gu, Daejon Korea
Beijing, China
Moscow, Russia
Burbach, Germany
Strasbourg, France
Moscow, Russia
Burbach, Germany
Strasbourg, France
Beijing, China
Yuseong-Gu, Daejon, Korea
Kanagawa, Japan
Singapore
Hong Kong, China
Bangalore, India
Legnano (Milan), Italy
Santa Clara, CA, USA
Oxford, MA, USA
London, United Kingdom
Novi, MI, USA
Yuseong-Gu, Daejon, Korea
Beijing, China
Moscow, Russia
Burbach, Germany
Strasbourg, France
Moscow, Russia
Burbach, Germany
Strasbourg, France
Beijing, China
Yuseong-Gu, Daejon, Korea
Kanagawa, Japan
Singapore
Hong Kong, China
Bangalore, India
Legnano (Milan), Italy
Santa Clara, CA, USA
Oxford, MA, USA

Please note: IPG has 4 offices in China and 2 offices in Japan. Map excludes rep offices.
IPG Overview

- Manufacturer of high-performance fiber lasers and amplifiers
- IPG’s products are displacing traditional laser technologies and finding new applications for its lasers
- Products are sold globally to OEMs, systems integrators and end users for use in many industries
- Global operations with 1,800 employees
- Founded in 1990; IPO in 2006
- Headquartered in Oxford, Mass
Fiber Lasers: A Truly Disruptive Technology

Source: EALA, Automatic Feed Co., ALAW 2009
Broad Advantages Versus Traditional Solutions

Compared to traditional lamp/diode pumped Nd:YAG and CO₂ lasers, fiber lasers deliver many benefits:

- Superior beam quality
- Greater output power
- Higher electrical efficiency
- Lower maintenance
- Higher reliability
- More competitive on cost/watt
- Smaller footprint and size
- More mobile and rugged
- Ease of integration with robots

Bottom line: Dramatically lower total ownership costs
IPG Competitive Advantages

- Proprietary technologies developed over 19 years
- Vertical integration of critical components (diodes, specialty fibers)
- Significant manufacturing scale and low manufacturing cost
- Technology validated by a diverse base of users/OEMs
- No fiber laser competitors at high-power levels
- No laser competitors at super high-power
- Important early-stage IP portfolio
- ~150 people in R&D
Why IPG is Growing So fast

• Fiber Lasers have enabled manufactures to reevaluate the utilization of Lasers for their production applications to take advantage of the many benefits that the technology offers.
• Fiber Lasers eliminate the major objections usually associated with laser manufacturing.
• Fiber Lasers have provided unique solutions to manufacturing with lasers technology.
IPG Benefits from Vertical Integration

Fab Operations
- Semiconductor Wafer Growth
- Diode Processing
- Chip Mounting
- Burn-In

Laser diode Packaging
- PLDs 5-25

Optical Preforms
- Silica based glasses
- MCVD, OVD, PCVD, zole-gel methods

Final Assembly
- Combining
- Final burn in
- Shipment

Fiber Modules
- Up to 800-1000 Watts

Fiber Blocks
- Potting active fibers

Components
- Bragg Gratings
- Isolators
- Couplers

Fiber Draw
- 6 Draw towers
- Active fibers only
- >200 different fibers

Deep in technology
Deep in experience

IPG Proprietary. Cleared for Release to US Government Agencies and Contractors
Winning Market Share in Materials Processing

Diverse Uses and Markets

- Automotive
- Consumer Products
- Merchant Diodes
- Solar Processing
- Hybrid Battery
- Aerospace
- Electronics/Semis
- Wind Turbines

Representative Customers
Advanced Applications Drive Tomorrow’s Products

Applications
- Directed energy
- Obstacle avoidance
- LIDAR
- Optical pumping
- Counter-measures
- Sensing and instrumentation

Customers

[Logos of various companies]
Unique Products for Telecom/Medical Markets

Telecom Applications
- Broadband-fiber to the premises
- Broadband-cable video signal transport
- Metro and long-haul DWDM systems

Medical Applications
- Skin rejuvenation and wrinkle removal
- Dental and ophthalmology
- Surgery/Urology

Customers

[Logos of various companies]
IPG Ytterbium Fiber Laser Product Line

• CW single mode Fiber lasers from 5 watts – 10000 watts (diffraction limited)
• Low order mode CW Fiber Lasers available from 100 watts to above 50kW
• Pulsed (Q-switched) over 20 models with peak powers to 50 kilowatts and pulse energies to 50-milli-joules
• QCW laser with pulse energy to 6kW average power to 500 watts
• Pulsed and CW lasers operating a 532 nanometers
From Lamp Pumped to Fiber Laser

Lamp Pumped Solid State Laser

Diode Bar End Pumped Fiber Laser

Monolithic Fiber Laser (IPG Photonics)
High Power Fiber Laser Configuration

Active Fiber:
- Multi-Clad, Circular Cladding,
- Low Diameter, ~2-10m Total Length
- High Yb$^{3+}$ Concentration

Pump Diodes:
- Multimode
- 90μm stripe
- 30W to 100W Output Power
Proprietary Power Coupling Technology

- Double clad design, pump energy delivered through large core fiber, laser produced in 9um inner core, single mode output
- Scalable to Higher power, high reliability, broad stripe diodes
- No limitation on insertion of pump photons-can distribute gain
- No residual pump light in output
- Advantages:
 Scalability, Reliability and Performance
Pump Diodes

Single Stripe Diode (100μm)

- Conventional Cooling
- Low Current
- Low Heat Dissipation
- Easy to Pigtail
- Lifetime > 100,000 hrs

Diode Bar (Array)

- HP Water Cooling
- High Current
- High Heat Dissipation
- No Fiber Delivery
- Lifetime > 10,000 hrs
New: 60 W Diode Module, model PLD-60
Lifetime test of single stripe LDMs

36LDMs; I=9A; T_{case} =85^\circ\text{C}
Fiber Lasers - Available SM Power

Yb Lasers
- 10 kW
- 100W
- Raman Lasers 100W

Er Lasers
- 200W
- Raman Lasers 50W

Tm Lasers
- 200W

Wavelength, µm

Output Power
High Power SM Fiber Laser Modules

- \(P = 250 & 400 & 1000 \text{ W} \)
- \(\lambda = 1070 \text{ nm} \)
- \(\text{BPP} = 0.34 \text{ mm x mrad} \) (\(M^2 < 1.05 \))
- \(W \times H \times D = 42 \times 33 \times 4.7 \text{ cm} \)
- DC wall-plug efficiency > 32 %
500 watt Ytterbium Fiber Laser

500 W CW Single Mode Output Power
TEM$_{oo}$ operation (M$^2 < 1.05$)
Single Mode Fiber Delivery Line
Size: 19 x 7 x 18 inches Weight: 20kg Air Cooled / 110-220V AC
Beam Quality

- **Single Mode**
 - TEM 00, $M^2 = 1$, Pure Gaussian
 - Used for cutting, High speed welding, Micro machining
Properties of Single Mode Fiber Lasers

- M2 < 1.1
- Fiber diameter 7-15 microns
- Modulation frequency to 50 kHz
- Air cooled to 500 watts available to 10kW
- Output power to 10.0 kilowatts
- Delivery cables to 10 meters
- High wall plug efficiency
Modular Fiber Laser Structure

- 1 to 10kW Output Optical Power
- >50,000 hrs Estimated Diode Life Time
- High Brightness
- Wall Plug Efficiency ~30%

- Single or Multiple Output Fibers
- Air or Water Cooled
- 19” Rack Mountable or OEM Module Versions
Compact, Lightweight SM Modules

- $P_{OUT} = 800-1000$ W
- $\lambda = 1070$ nm
- $BPP = 0.34$ mm \times mrad
 - ($M^2 < 1.05$)
- $W \times H \times D = 60 \times 33 \times 4.7$ cm
- DC wall-plug efficiency $> 35\%$
- Weight $\sim 10-12$ kg
- $W / \text{lb} \sim 40-50$
High Power Fiber Lasers

<table>
<thead>
<tr>
<th>Power Level , kW</th>
<th>Beam Product, mm x mrad</th>
<th>Output Fiber, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.2</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>4.2</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>5.0</td>
<td>100</td>
</tr>
</tbody>
</table>
Use of fiber-fiber couplers offers the opportunity to
- increase reliability by a fast exchange of high stressed processing fibers in case of damage
- achieve high beam quality by minimal losses of coupling
- adapt spot size by process fiber diameter
Fiber Laser Beam Coupler

- 50 Micron Input Fiber
- Coupler
- 600 Micron Output Fiber
Use of beam-switches offers the opportunity to
- increase reliability by a fast exchange of high stressed processing fibers in case of damage
- achieve high beam quality by minimal losses of coupling
- increase productivity and efficiency by high emission time of the laser
2 way Beam Switch

Other Fibers
100 Micron
200 Micron
400 Micron
600 Micron
1mm

Square Fiber
☐ 600 Micron

50 Micron Input Fiber 200 Micron Output Fiber 600 Micron Output Fiber
Beam Profile of 4kW Fiber Laser
Switching ON/OFF

Switching On Time < 30 μs

Switching Off Time < 10 μs
4 kilowatt 8 hour stability run
New: Compact Low Mode Ytterbium Fiber Lasers
Model YLRC-2000 & OEM Design

- Output power: > 2 kW
- Fiber core diameter: 50 μm
- Beam quality: BPP < 2.5 mm*mrad
- Delivery fiber: up to 50 m
- Modulation: up to 5 kHz
- Consumption: < 7 kW
- Wall-plug efficiency: > 30 %
- Dimensions: 790 x 815 x 557.5 mm
- Weight: 130 kg
Focusing a Fiber Laser

Focal Length of Focus Lens = \frac{\text{Focal length of focus lens}}{\text{Focal Length of Collimator}} \times \text{Fiber diameter}

Collimated Beam Diameter = \text{Divergence} \times \text{Focal length of Collimator} \times 2

- Shorter Collimator → Larger Focused Beam → Smaller beam Diameter
- Longer Collimator → Smaller Focused Beam → Larger collimated Beam Diameter
- Smaller Fiber or Shorter focus Lens → Smaller Focused Beam
- Larger Fiber or Longer Focus lens → Larger Focused Spot
Remote Welding

- Conventional Focus head
- Fixed Beam / Short working distance
- Part or Head must be moved in x/y plane

- Galvo Welding
- Long Working distances
- Beam Moved to weld while part remains stationary
Remote Welding – Optical Set up

• For remote welding, a spot size of 500 um required at 1 meter

• $F_{\text{coll}} = F_{\text{focus}} \cdot \frac{FD}{SS} = 200\text{mm}$

GIVEN
• Fiber Dia = 100um
• Focal Length = 1 meter
Benefits of Fiber Lasers

- Maintenance free
- Wall plug efficiency >28%
- No mirror alignment or replacement
- Totally monolithic
- Diode life > 100,000 hrs
- Compact footprint/mobile
- Minimal spares requirement – sealed system

- Long working distance
- Low cooling requirements
- Delivery fiber to 200 m
- Suited for cutting, welding, drilling, bending, cladding
- Low acquisition cost
- Same unit can weld and cut
- On demand power
Low Power fiber laser production applications

- Stent cutting
- Cutting surgical blades
- Welding of blades
- Cutting solder-masks
- Silicon cutting (solar panels)
- Adjustment of disc drive flexures (bending)
- Laser engraving (rolls and flat plate)
- Welding of metal devices
- Laser sintering
Laser Sintering – 200W Single Mode
High Power low order mode fiber laser applications in production

- Cutting of hydro-formed automotive frames
- Blank welding for automotive industry
- Titanium welding of aircraft skins
- Laser cladding for Aerospace and Oil industries
- Battery welding for medical device industry
- Pacemaker welding for medical device industry
- Transmission welding for Automotive Industry
- Sheet metal cutting
Hybrid Welding

• Combination of laser and GMA welding
 – Lower heat input
 – Faster Speeds
 – Single Pass Welding
 – Gap Tolerance

• Industrial Applications
 – Shipbuilding
 – Construction
 – Tubing
Hybrid Welding

- Laser provides deep penetration
- GMAW provides filler
Laser Surface Treatment with a Fiber Laser + Faceted Integrator Optic

Transmissive Faceted Integrator Optic
- ZnS material; facets diamond turned
- Useful for making custom beam shapes, large spot sizes
- Round, square or rectangular shapes possible; custom build-to-order
- Example: ½” x ½” square for heat treating
Beam Profile from integrating optic
10kW CW Ytterbium Fiber Laser

Pipeline Steel X70, 12 mm

Laser Power: 10.2 kW
Fiber Core: 200 µm
Fiber Length: 80 m
BPP: 11.5 mm x mrad
Welding Speed: 2.2 m/min
Weld ability of cast-iron / steel dilution welds

Potential application:
Differential gear
GGG 60 / 17CrNi6-6

series standard:
CO₂-Laser
6.0 kW
νₛ = 1.3 m/min
with filler wire
welding time 21 s

lab results:
fiber laser
4.0 kW
νₛ = 4.5 m/min
without filler wire
welding time: 6 s
14 mm S.S 10 kW compliments EWI Columbus Ohio
Mild Steel Welding (t=11.2 mm)

X70, t = 11.2 mm
P_L = 10.2 kW
v_S = 2.2 m/min

Laser GMA Hybrid Welding
X70, t = 11.2 mm
P_L = 10.5 kW
v_S = 2.2 m/min
I = 243 A
U = 25.3 V
Welding of Aluminium

Laser MIG hybrid welding

EN-AW 6008,

\[t = 4 \text{ mm} \]

SZW AlSi5

\[P_L = 10.5 \text{ kW} \]

\[v_S = 8 \text{ m/min} \]

\[PL = 10.5 \text{ kW} \]

\[vS = 12 \text{ m/min} \]
Mobile Laser Components

Power source 10KW
Ytterbium:YAG – Fiber laser

Laser Welding Head
Saw Blade Welding

Laser Power

1.0 kW

\[v_s = \begin{align*} 30 \text{ m/min} \\ 8 \text{ m/min} \\ 10 \text{ m/min} \end{align*} \]
Penetration of Stainless Steel
Material: Stainless Steel 1.4301
Laser: 8kW
Spot: 330µm
Why are Fiber Lasers outpacing market growth?

- Replacement of high maintenance and unreliable lasers (for the first time a replacement technology)
- Has made laser manufacturing more attractive
- Ease of integration to robots or multiple workstations
- Mobility
- Power levels never before achieved at 1 micron
- Superior performance on all applications when compared to both CO$_2$ and YAG lasers
- Multi-use from a single laser source
Processing Advantages

- Use of trans-missive optics
- 2-2.5 faster processing speeds than CO2 lasers at same power level
- Utilization of long focal length lenses for remote welding and scanner applications
- Multi-use welding, cutting, cladding etc.
- No requirement for He cover gas for welding
- Consistent spot size and profile over complete dynamic range
- Same laser can do both micro and macro applications
IPG Application & Geographic Diversity Lowers Risk

Broad End Uses\(^{(1)}\)

- Materials Processing: 84%
- Advanced: 8%
- Medical: 3%
- Telecom: 5%

Geographic Diversification\(^{(1)}\)

- North & South America: 21%
- Asia & Australia: 41%
- Europe, Russia & CIS: 37%
- ROW: <1%

\(^{(1)}\) For the year ended 12/31/2010
Laser Market 2010 - 2011

Growth Drivers

- Winning greater % of new systems
- Retrofit of existing systems
- Growing general laser market
- Addressing existing and new applications

- Materials Processing Historic CAGR through 2010 –17.99%

- IPGP share of total laser sources for materials processing in 2010 was approximately 16%

Expected Growth

YOY Growth 13.44%

Source: OptoIQ Annual Review Materials processing excludes semi-conductor lithography
Sales and Gross Margin Growth

(1) Gross margin includes stock-based compensation of $0.1mm, $0.3mm, $0.3mm, $0.6mm, $0.7mm and $0.5mm for 2006, 2007, 2008, 2009, 2010 and YTD 2011 respectively.
IPG’s Broad Range of Lasers & Amplifiers

FY 2010

- High-power Lasers: 40%
- Medium-power Lasers: 31%
- Pulsed Lasers: 8%
- Low-power Lasers: 5%
- Other: 16%
Improved manufacturing cost when utilizing fiber lasers

- Factory floor space - compact design
- Electrical requirements - high electrical efficiency
- Very low maintenance - long diode life
- No requirement for beam monitoring
- Reduction in service labor – no alignment or replacement required
- Low capital investment
- Ease of install & integration
- On demand power
- Multi-use
Conclusions

• Fiber Lasers have made major impact worldwide in the American material processing market.
• The reliability has been proven on multiple material processing applications at all power levels in production environments.
• The performance of fiber lasers exceeds previous laser technologies while offering substantial cost benefit to users.
• Fiber Lasers have expanded the market for laser material processing.
THANK YOU FOR YOUR ATTENTION